
ABSTRACT

For the application of Java in realtime and safety cri-
tical domains, an analysis of the worst-case execu-
tion times of primitive Java operations is necessary.
All primitive operations must either execute in
constant time or have a reasonable upper bound for
their execution time. The difficulties that arise for a
Java virtual machine and a Java compiler in this con-
text will be presented here. This includes the imple-
mentation of Java’s class and interface model, class
initialization, monitors and automatic memory ma-
nagement. A new Java virtual machine and compiler
that solves these difficulties has been implemented
and its performance has been analysed.

1. INTRODUCTION

Java [AG98] is becoming increasingly popular for
software development, even in application domains
well beyond the original target domain of the lan-
guage. The driving force is the high productivity,
code quality, security and platform-independence
that typically goes along with the use of Java. Java is
promoted even as a development tool for realtime
critical systems that require deterministic execution
[JCons00, RTJEG00], even though there are several
obstacles to be overcome to achieve deterministic
execution of Java code.

The most obvious source for indeterministic
execution is the use of garbage collection in Java.
Realtime embedded systems such as in industrial au-
tomation, avionics or automotive applications often
require short response times. Blocking garbage
collectors cause long pauses that are hard to predict
and unacceptable for these applications.

Although incremental garbage collection techni-
ques can help to reduce the likelihood for a blocking
garbage collection pause, they can not guarantee it. It
can still occur that the collector does not make suffi-
cient progress and does not catch up with the
application. Consequently, the system can fail or re-
quire long blocking pauses to recycle memory or de-
fragment the heap.

A deterministic implementation of Java must pro-
vide means to determine worst-case execution times
for Java’s primitive operations. The dynamic struc-
ture of Java, with inheritance, virtual method calls
and multiple-inheritance for interfaces, poses several
difficulties for the implementation. The time requi-
red for calls or type checks must be limited and stati-
cally determinable.

Further difficulties are caused by the dynamic na-
ture of Java’s class loading and initialization mecha-
nism. Finally, Java’s synchronization primitives that
permit to have a monitor associated with any Java
object and Java’s exception mechanism pose further
difficulties for a deterministic implementation.

2. RELATED WORK

Research on object-oriented language implemen-
tations so far focused on high average-case runtime
performance. A predictable runtime cost, that is re-
quired in realtime systems, is of little importance for
classical Java applications.

For the use of Java in realtime applications, Nil-
sen identifies the analysis of conservative worst-case
execution times for code sequences that exclude re-
cursion and unbounded loops as a key enabling tech-
nology [Nilsen96, NR95]. This analysis is not straight-
forward for all of Java’s primitive operations; this
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paper will describe how a Java implementation can
permit this analysis. The other enabling technologies
listed by Nilsen are execution time measurement,
rate-monotonic analysis [LL73], static cyclic sche-
dules and realtime garbage collection.

A number of publications describe technologies to
efficiently implement object-oriented languages or
Java specific features like monitors, improving the
average-case runtime and memory costs.

Different approaches for the implementation of
dynamic dispatching in the context of single- and
multiple-inheritance have been proposed. Zendra et.
al. suggest using specific dispatch functions instead
of virtual function tables to make better use of mo-
dern processor architectures [ZCC97]. Typical im-
plementations of C++ [Strou87] use several virtual
function tables per object and direct references to
sub-objects to implement multiple inheritance. To
improve the average performance of virtual calls, in-
line caching has been suggested [DS84].

Yang et. al. [Yang99] and Bacon et. al. [BKMS98]
presented techniques to inline monitors in objects
and reduce the average runtime cost for monitor
operations to a minimum. However, their approaches
cannot avoid high worst-case overhead in the case of
contention.

3. THE JAMAICA VIRTUAL
MACHINE IMPLEMENTATION

Jamaica is a new virtual machine implementation
for Java and a static Java bytecode compiler. It provi-
des deterministic execution of the whole Java lan-
guage, including deterministic garbage collection,
and constant time execution of the primitive Java
operations. 

Jamaica uses a builder utility to create stand-alone
applications out of a set of Java class files and the Ja-
maica virtual machine. The builder can perform
smart linking and compilation of the Java application
into optimized C code using a static Java bytecode
compiler. The compiler implements several optimi-
zations similar to those described by Weiss et. al.
[Weiss98]. The generated C code is then translated
into machine code by a C-compiler such as gcc.

To reduce the footprint of Java applications, inter-
preted compact byte code and compiled machine
code can be mixed. Profiling data can be used to

guide the compiler to compile only the hot spots of
the applications and achieve the best speedup with a
small increase in code size. 

3.1 Executing Bytecodes

Most Java bytecode instructions can be imple-
mented directly as a short sequence of machine in-
structions that executes in constant time when cache
effects are ignored. Even in the presence of processor
caches, a short worst-case execution time can be de-
termined easily. These operations include accesses to
local variables and the Java stack, arithmetic instruc-
tions, comparisons and branches. 

The bytecode instructions for which a determini-
stic implementation is not straightforward will be de-
scribed in detail in this section.

3.1.1 Loading String Constants
One needs to be careful when loading string con-

stants with the ldc bytecode instruction. If this in-
struction is used to load a string object, this string ob-
ject must have been created in advance to avoid un-
predictable allocation overhead. The implementation
achieves this by creating all constant string objects at
class load time. During execution, loading the
string’s address is all that needs to be done.

3.1.2 Class Initialization
The semantics of Java require that on the first

access to a static field, a static method or the first
creation of an instance of a class the corresponding
class be resolved and its static initializer be executed.
In a standard Java implementation, the first resolu-
tion of a class also causes the class to be loaded, cau-
sing a very complex operation that might take much
time. The resolution causes very long worst-case
execution times of the primitive operations that
might cause class resolution, while the actual execu-
tion time of these operations is typically very short
once the referred class is initialized. 

This problem is not easy to solve without chan-
ging Java’s semantics. The Java virtual machine
specification [LY99] explicitly allows early loading
and resolution of classes, as long as the semantics of
Java are respected. However, this does not allow ear-
ly execution of static initializers, since this would
change the control flow and hence the semantics of
the implementation.



To avoid the overhead of
loading and linking a class
during class resolution, the Ja-
maica virtual machine recursi-
vely loads and links all classes
that are referenced by the root
class at system initialization. If
later during execution of the
system additional classes are
loaded using methods like
java.lang.Class.forName() or
the reflection API, this process is repeated and all re-
ferenced classes are loaded as well.

What is left at the first reference to a class is the
execution of its static initializer. The user is free to
perform arbitrarily complex calculations within the
static initializer, so a worst-case execution time for
this operation can not be guaranteed by the Java
implementation unless the static initializer is relati-
vely simple, e.g., code that contains no method calls
or loops.

Even for simple static initializers, the call over-
head causes fairly bad worst-case execution times for
simple operations like an access to a static field. The
user can avoid this overhead by explicitly causing
early initialization of the referred class during system
startup.  

The resulting overhead for operations that cause
class resolution is then reduced to the overhead of
checking the initialization state of the class. This can
be done by reading a single field in the class’ de-
scriptor and a conditional branch.

We plan to improve the Jamaica compiler such
that explicit early initialization can be detected stati-
cally such that the test can be avoided in most cases.

3.1.3 Method Invocation
The invocation of methods in the context of class

extension and interface implementation is another
difficulty for a deterministic implementation of Java.
There are four different bytecode instructions for the
invocation of methods. 

Static Calls

Two call instruction avoid dynamic binding alto-
gether: invoke_static and invoke_special. The first
one is used to call static methods, while invoke_spe-
cial is used for instance methods, but uses static bin-

ding instead of dynamic binding (this is used for ob-
ject initialization or when explicit calls to a certain
class’ method is needed as in super.method()). The
lack of dynamic binding semantics in these two byte-
code instructions makes the implementation straight-
forward. Control flow can directly switch to the cal-
led method since the target method is known.

Virtual Calls

A call using invoke_virtual is slightly more diffi-
cult to implement since the dynamic type of the tar-
get object needs to be taken into account. If the cal-
led method was redefined by the dynamic type of the
target, that redefined method needs to be called.

The standard method of implementation provides
deterministic execution time. A virtual call is imple-
mented with a method table that is part of the type
descriptor of each object (Figure 1). Each method is
assigned a unique index in the method table. Inheri-
ted methods keep their unique indices in the new
class. Methods defined within a class are assigned
the next available index, while methods that redefine
inherited methods inherit the index of the original
method. Every method is recorded in the method
table at its index, while inherited methods that were
redefined are replaced by their redefined versions.

This technique permits one to find the target me-
thod of a virtual call very efficiently. All that is requi-
red is a lookup in the method table at the method’s
index. If the method has been redefined, the redefi-
ned method’s entry will use the same index as the
original method and the redefined method will be
found. Using this technique, a virtual call can be per-
formed in constant time.

Interface Calls

The most difficult to implement calls are calls to
interface methods via the bytecode operation invo-
ke_interface. The reason is that multiple inheritance
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Figure 1: Method table used for dynamic binding of virtual calls
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makes it impossible to assign constant indices to the
methods as in the case of virtual calls. A dynamic
search for the called method is typically made in this
case. This causes a call overhead that depends on the
number of methods in a class or the number of inter-
faces implemented by a class. Therefore calls to in-
terface methods are significantly less efficient in
many Java implementations and the execution time
depends on the structure of the target class. 

The representation of classes and interfaces that
was chosen for the Jamaica implementation permits
constant-time calls to interface methods. Every inter-
face is assigned a unique identifier interface_id, star-
ting at 0 for the first interface loaded. Each method
within an interface is assigned an interface_me-
thod_index similar to the methods of normal classes.
The class descriptor of every class that implements
one or several interfaces contains a reference to an
array of references. This array is referred to as imple-
ments array. For each interface that is implemented,
the implements array contains a valid reference at the
interface’ interface_id. This reference points to an ar-
ray of the methods defined in the interface and im-
plemented in the class, with each method at its inter-
face_method_index (Figure 2). All entries in the im-
plements array that correspond to interfaces that are
not implemented by the class are set to null. For the
call of an interface method, all that is needed is to
read the implements array from the target object’s
type descriptor, index this array at the interface’ in-
terface_id and finally read the method at the interfa-

ce_method_index. Compared to virtual methods, the-
re is only one additional indirection needed, calls to
interface methods are performed in constant time.

Nevertheless, there is an important disadvantage
of this approach: the size of the implements array is
linear in the number i of interfaces, and the total
memory required for a system with c classes is there-
fore in O(c·i). The memory usage is quadratic in the
size of the code. With the applications executed
using Jamaica, this has not caused any difficulties,
but it might be a problem for very large applications.

The memory overhead can be reduced using some
simple optimizations. It is sufficient if the size of the
implements array is reduced to interface_id+1 for the
largest interface_id of all the interfaces implemen-
ted. In addition, all classes that do not implement any
interfaces can share one single empty implements ar-
ray. Jamaica makes use of these optimizations.

Dynamic loading of interface classes can also be
handled using this mechanism. New interface classes
will be assigned new interface_ids and classes im-
plementing this interfaces will get sufficiently large
implements arrays. In the context of class garbage
collection, care must be taken to ensure that unused
interface_ids will be reused, so that the size of the
implements arrays does not grow without limit.

One can imagine that the typically high additional
overhead for calls due to multiple inheritance might
be the only reason for the existence of interfaces.
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Figure 2: Interface call using implements array
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Using the scheme presented here, the overhead is mi-
nimal compared to a virtual call using single inheri-
tance. If Java allowed multiple inheritance for nor-
mal classes, there would be no need for interfaces at
all. A single concept, the class, could be used to mo-
del interfaces and classes. This would remove the of-
ten difficult decision whether to model a concept
using an abstract class or an interface. The former is
more powerful by allowing the implementation of
some methods, while the latter is more flexible and
allows multiple inheritance. Object-oriented pro-
gramming languages like Eiffel have shown that a
single concept using multiple inheritance is suffi-
cient and that efficient implementation of multiple
inheritance is possible [Meyer92].

Additional Call and Return Overhead

Apart from the overhead needed to determine
which method is called, a call requires setting up a
new stack frame. Later, this stack frame has to be re-
moved when the method returns. Unlike in lan-
guages like C or C++, the creation and removal of
the stack frame is not a constant time operation. The
reason is that reference values on the stack frame
must be known to the garbage collector. Each entry
in the stack frame that is reserved for a memory refe-
rence must be at least initialized at the start of a me-
thod call and also perhaps cleaned up at the end of
the call. Consequently, the overhead for creation or
removal of a stack frame is linear in its size.

3.1.4 Type Checking
Another problem area for a deterministic imple-

mentation that is closely related to dynamic calls is
dynamic type checking. There are two situations in
Java code that require dynamic determination of the
type of a reference: explicit type tests using the in-
stanceof operator and type casts. Consequently, there
are two bytecode operations, instanceof and check-
cast, for these two purposes. The first of these, in-
stanceof, tests if a referenced object is of a certain
type and produces a boolean result, while checkcast
causes an exception if the type test fails, and does no-
thing otherwise. Furthermore, there are three catego-
ries of types in Java that have to be treated different-
ly in the type check: classes, interfaces, and arrays.

Type Checking for Classes

The most common case for a type check is
checking whether or not a referenced object is an in-

stance of a certain class. As an example, assume the
following if-statement.

i f  ( r  i ns tanceo f  A )  {
Sys tem.ou t .

p r i n t ( “ r  i s  o f  c lass  A “ ) ;
}

The straightforward implementation of this type
check would traverse the inheritance-chain of the ob-
ject referenced by r until either class A is found or the
root object java.lang.Object has been reached. This
implementation requires time linear in the depth of
the inheritance tree, a worst-case execution time for
the type check is difficult to determine. 

A simple modification of the representation of in-
herited classes permits constant-time type checking
for classes. Every class has a fixed position in the in-
heritance tree and a fixed distance to class
java.lang.Object. All classes in the inheritance tree
that are on the path from a class C to java.lang.Ob-
ject are referred to as C’s ancestors. C’s ancestors in-
clude the classes C and java.lang.Object. The num-
ber of ancestors of class C is the depth of C in the in-
heritance tree. Any class descriptor can now be
equipped with a reference to an array of all ancestors,
as shown in Figure 3. Each ancestor that resides at
position depth in the inheritance tree is stored at po-
sition depth-1 in this ancestors array. Now, the type
check can be done in constant time. All that is needed
is a check of the ancestors array’s entry at the positi-
on corresponding to the class’ depth. 

C-code that performs the instanceof-check shown
above would look like this.

i f  ( ( r !=nu l l                       )
&&  ( r -> t ype ->

ances to rs . l eng th>=A->dep th )
&&  ( r -> t ype ->

ances to rs [A ->dep th -1 ]  ==  A) )
{

Sys tem.ou t .
p r i n t ( “ r  i s  o f  c lass  A “ ) ;

}

The code requires reading the referenced object’s
class descriptor, the ancestors array, the array length
and one element in the array. The depth of class A
and the class descriptor of class A are also required in
this test, but these values are runtime constants and
can be inlined by a compiler.



Type Checking for Interfaces

The ancestors array approach used for class types
cannot be used directly for interfaces since a class
might implement several interfaces that reside at the
same depth in the inheritance tree. What is needed is
an array with a unique entry for every interface that
is implemented by a class. Fortunately, such an array
was already introduced for the efficient implementa-
tion of interface calls: the implements array. 

For a type check of the form

i f  ( r  i ns tanceo f  I )  {
Sys tem.ou t .

p r in t ( “ r  i s  o f  i n te r face  I “ ) ;
}

all that is needed is to check whether the implements
array of r has an entry for interface I. In C-like code,
this might look as follows.

i f  ( ( r !=nu l l                       )  
&&  ( r -> t ype ->

imp lemen ts . l eng th  >   I -> id )
&&  ( r -> t ype ->

imp lemen ts [ I -> id ]  !=  nu l l  ) )
{

Sys tem.ou t .
p r in t ( “ r  i s  o f  i n te r face  I “ ) ;

}

The code requires reading the class descriptor refe-
rence, the implements array, its length and the entry
corresponding to the interface I. The interface_id
that is required is a runtime constant.

Type Checking for Arrays

The type checking semantics for arrays are defi-
ned recursively. The examined type must be an array.

If this is the case, the type checking continues for the
element type of the array. A straightforward imple-
mentation of this definition requires execution time
linear in the number of dimensions of the array. Ne-
vertheless, a constant-time implementation of type
checking for multidimensional arrays is possible.
One need only store the dimension count and a refe-
rence to the final non-array element type with the ar-
ray type. 

This can be illustrated using the following code
sequence.

i f  ( r  i ns tanceo f  A [ ] [ ] [ ] )  {
Sys tem.ou t .

p r in t ( “ r  i s  o f  t ype  A [ ] [ ] [ ] “ ) ;
}

All that is required for this test is to check whether
the object referred to by r is an array of dimension
three and the base element type A. The C-code might
look like this:

i f  ( ( r !=nu l l                        )
&& ( r -> type->d imens ions  ==  3       )
&&  ( r -> t ype ->e lemnt ->

ances to rs . l eng th  >=A->dep th )
&& ( r -> t ype ->e lemnt ->

ances to rs [A ->dep th -1 ]  ==  A) )
{

Sys tem.ou t .
p r in t ( “ r  i s  o f  t ype  A [ ] [ ] [ ] “ ) ;

}

The code checks the correct number of dimensions
of the array and then does a type check for the ele-
ment class as described above. 

Care needs to be taken when checking arrays of
class java.lang.Object or interfaces java.lang.Clo-
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Figure 3: Type checking for classes using ancestors array. Class B extends 
class A which inherits directly from class java.lang.Object.
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neable and java.io.Serializable. The class java.lang.
Object is an ancestor of all arrays and the two inter-
faces are implemented by all arrays. To implement
the type check for these arrays correctly, the check
must additionally succeed whenever the dimension
of the examined type is higher than that with which
the array type it is compared.

3.1.5 Switch Statement
The Java bytecode provides two different opera-

tions for switch-statements: tableswitch and lookup-
switch. For a switch-statement with case-entries that
are similar values, tableswitch is used. It permits a
constant-time table lookup for the statement se-
quence that needs to be executed.

For case-entries that extend over a large range of
values with unused intervals tableswitch would re-
quire a large table. In this case, lookupswitch is used
in the bytecode. This instruction uses a sorted table
of case-value and target address pairs. The lookup
requires a binary search of this table, hence the run-
time is logarithmic in the number of case-labels in
the switch statement. 

The Java implementation of the interpreter has
little choice here but to implement the binary search,
converting a lookupswitch into a constant-time ta-
bleswitch might require too much memory for the
table. The user of the system must therefore be ca-
reful when using switch-statements with case-entries
that stretch over a large range of values.

A Java compiler that generates native code can
use perfect hashing here. During compilation time, a
conflict-free hash function is computed which maps
the case-values to target addresses. The jump is then
executed in O(1). As shown by Mehlhorn, such a
hash table of size 3n, where n is the number of case-
labels, can be computed in cubic time [Mehlh84].
Future versions of Jamaica that generate native code
will use perfect hashing here. The currently genera-
ted C code uses C’s switch statement and relies on
the C compiler’s implementation.

3.1.6 Memory Allocation
The most difficult problem to be solved by a de-

terministic implementation of Java is to provide de-
terministic behaviour of dynamic memory alloca-
tion. The implementation has to guarantee a hard up-
per bound for the execution time of an allocation.

But this is not sufficient, it also has to guarantee that
the garbage collector recycles memory sufficiently
quickly for the application not to run out of memory.
Finally, the implementation must guarantee that frag-
mentation or conservative scanning techniques do
not cause the loss of memory in a way that alloca-
tions cannot be satisfied. The implementation conse-
quently uses an exact garbage collector that has ac-
curate information on all reference values in objects,
local variables, stacks and processor registers. 

To avoid fragmentation, compacting or moving
garbage collection techniques are typically employ-
ed. These techniques nevertheless cause several dif-
ficulties for an efficient implementation. For exam-
ple, references to moved objects must be updated to
the new location of a moved object. This updating
must include references in local variables or pro-
cessor registers. 

The Jamaica implementation uses a new approach
to avoid fragmentation altogether. The heap is regar-
ded as an array of blocks of a fixed size (typically 32
bytes per block). On allocation of an object, at least
one such block is used. If this is not sufficient, a line-
ar list of possibly non-contiguous blocks is used to
represent the object. Arrays are represented as a tree
of blocks with the array elements just in the leaf
nodes. The use of this object and array model allows
the use of non-contiguous regions of memory for
allocation. There is no need to defragment memory
and move objects. This technique to avoid fragmen-
tation has been described in detail in an earlier publi-
cation [Siebert00].

In classic Java implementations, the garbage col-
lection activities occur unpredictably whenever the
system memory runs low or certain thresholds are
reached. Additionally, these implementations typi-
cally cannot guarantee that the garbage collector per-
forms sufficient recycling work to catch up with the
allocation of the application. This approach is not ap-
plicable for a deterministic implementation.

Jamaica couples garbage collection activity with
allocation. Whenever a block of memory is alloca-
ted, a certain number of blocks are scanned by the
garbage collector. As has been shown earlier [Sie-
bert98], this approach can guarantee sufficient gar-
bage collection progress for the system not to run out
of memory and it can guarantee upper bounds for the
amount of garbage collection work that is required



for the allocation of one block of memory as long as
the amount of reachable memory used by the
application is limited.

For an application that uses not more than a frac-
tion k of the total heap size as reachable memory, the
upper bound Pmax of the number of units of garbage
collection work that need to be performed for the
allocation of one block of memory can be deter-
mined statically. Several values for k and the corre-
sponding values of Pmax are presented in Table 1. On
the PowerPC architecture, one unit of garbage col-
lection work for a block size of 32 bytes corresponds
to 266 machine instructions in the worst case. This
permits the determination of a worst-case execution
time for the allocation time of Java objects and ar-
rays.

3.1.7 Memory Accesses
The use of fixed size blocks to represent Java ob-

jects and arrays has an important impact on the code
that is required to access object fields and array ele-
ments.

Field Accesses

Since a linear list of blocks is used to represent
objects, the number of memory references required
is linear in the offset of the field within the object.
Fields that reside in the first block can be accessed
using a single memory access, while fields in the se-
cond block require two memory accesses, etc.

Fortunately, most Java objects are very small and
even for larger objects the fields that are accessed
most frequently are typically the first fields with the
lowest offsets [Siebert00]. For any field, the position
is known statically and hence the number of memory
accesses required can be determined statically.

Array Accesses

With array accesses, the situation is a bit more
complex since arrays are represented as trees. The
trees use the highest branching factor allowed by the
block size. For a block size of 32 bytes on a 32-bit
system, this means that the branching factor is 8.
Even very large arrays can be represented in a fairly

shallow tree. For a given system with a limited heap
size h, the maximum depth dmax for these trees can be
determined statically using the following term (for a
block size of 32 bytes).

dmax =  ln8( h / 32 )

For a heap of 32MB the resulting maximal depth is 7.
For an array access, one additional memory access is
required to read the array’s depth and one reference
is needed to read the actual element. So the total
number of memory references is dmax+2, or 9 for a
heap size of 32MB.

This enables the determination of a worst-case
execution time for array accesses. Even though this
time is much higher than that of a classical linear ar-
ray representation, it will be shown below that the
overall performance of the system is comparable to
that of traditional Java implementations.

3.2 Monitors

Several publications have presented efficient im-
plementations of Java monitors that reduce the
memory overhead of inlined monitors and the run-
time overhead in the most common cases. Yang et.
al. [Yang99] propose inlining the monitor and reser-
ving one word per object for the monitor. This word
consists of three sub-word sized integers that repre-
sent the nest count, the owner thread and a list of
waiting threads. The nodes of this list are stored in a
hashtable and they are only used if threads are ac-
tually waiting for a monitor.

Bacon et. al. [BKMS98] reserve 24 bits per object
for the monitor. They distinguish two different repre-
sentations for monitors: inlined and inflated. Inlined
monitors use the monitor value to store an identifier
for the owner thread and a nest count. Inflated moni-
tors use the 24 bits as a monitor id that functions as a
reference to a monitor object on the heap. Monitors
that are never subject to contention remain in inlined
representation, while monitors that are subject to
contention will be converted to their inflated repre-
sentation and will remain in this representation until
the object dies.

k: 0.0 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.975 1.0
Pmax: 1.0 6.173 8.085 10.67 14.47 20.71 25.67 33.10 45.45 70.11 144.0 291.8 ∞

Table 1: Upper bound for required GC progress per unit of memory allocated



The disadvantage of these monitor representa-
tions is their unpredictable runtime behaviour due to
the use of heap allocation or a hashtable for monitors
that are subject to contention.

The Jamaica monitor implementation avoids the
need to dynamically allocate monitor storage on the
heap or stack altogether. Monitors are always inli-
ned, using 16 or 32 bits per object (16 bits are suffi-
cient in systems with few threads and a limited nest
count). As long as no threads are waiting for a moni-
tor, it is sufficient to record the owning thread’s iden-
tifier and the nest count in the inlined monitor
(Figure 4). As soon as a thread tries to acquire a mo-
nitor that is owned by a diffe-
rent thread, a queue of wait-
ing threads needs to be
created. 

An important observation
one can make is that no
thread can ever be waiting
for more than a single moni-
tor. Hence, instead of crea-
ting independent node ob-
jects for the waiting queue,
one might as well reserve
some additional fields in the
thread object itself and create
a queue of thread objects for
all waiting threads. Since a
thread might own several
monitors simultaneously, the
owning thread itself must not
be part of this queue, only the
waiting threads can be linked
to the monitor. One bit in the inlined monitor indica-
tes that a waiting queue exists. In this case, the nest
count and owning thread’s identifier are copied into
reserved fields of the threads in the waiting queue.
The identifier of the first thread in the queue is stored
in the inlined monitor (Figure 5).

The result is a monitor implementation that is
very efficient for the most frequent cases of monitor
operations. Entering a monitor that is not owned by
any thread or that has already been acquired by the
current thread and exiting a monitor that has no other
threads waiting. The operations that involve waiting
threads do not require dynamic creation of a monitor
object, all that needs to be done is queuing and un-

queuing the waiting threads and performing the ac-
tual wait or resume.

3.3 Exceptions

Java’s exception mechanism enables control flow
from an active method back to a method with an ex-
ception handler that lies an arbitrary number of stack
frames above the current position in the call chain.
Throwing an exception that is handled by another
method therefore requires removal of all active stack
frames that lie in between the method causing the ex-
ception and the method handling it. This includes re-
moving of all local references in these stack frames
from the garbage collector’s root set, which is an
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Figure 5: Monitor owned by one thread with two waiting threads.
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operation linear in the number of active stack frames
and in the number of root references. 

The execution time for an exception is therefore
not constant and it is at least difficult to find a
constant-time implementation for exception hand-
ling. Using a mechanism like C’s setjmp and longjmp
enables constant-time change of the control flow that
is required for exceptions, but it does not provide
means to remove the information required for accu-
rate garbage collection.

In the Jamaica implementation, the execution
time of throwing an exception is therefore linear in
the size of the stack frames between the exception
throwing point and the corresponding exception
handler. Since exceptions are not supposed to be
used for normal control flow, but for exceptional
control flow only, this behaviour should be accept-
able even when deterministic execution in the non-
exceptional case is required.

4. PERFORMANCE COMPARISON

To evaluate the overall performance of the deter-
ministic Java implementation Jamaica and to compa-
re it to traditional Java implementations, the SPEC-
jvm98 benchmark suite [SPEC98] has been run

using Jamaica and several versions of SUN’s JDK
[SUN99, SUN00] with JIT compiler enabled (JDK
1.1.8; Classic VM build JDK-1.2-V, green threads,
sunwjit; and Solaris VM build Solaris_JDK_
1.2.2_05, native threads, sunwjit). Only one test
from the benchmark suite, _200_check, was exclu-
ded from the analysis since it is not intended for per-
formance measurements but to check the correctness
of the implementation (and Jamaica passes this test).

For execution, the test programs were compiled
and smart linked using the Jamaica builder. The pro-
grams were then executed on a single processor (333
MHz UltraSPARC-IIi) SUN Ultra 5/10 machine
equipped with 256MB of RAM running SunOS 5.7.

The results of the performance measurements are
shown in Figure 6. For the measurements, the heap
size was set to 32MB for all tests but _201_com-
press. This test required more memory to execute
and was run with a heap size of 64MB.

Compared to Sun’s implementation, the perfor-
mance of the deterministic implementation is similar
to that of JDK 1.1.8 or 1.2, while the performance of
JDK 1.2.2 was improved significantly. Since Jamai-
ca is still a very young implementation and not much
effort has been spent on improving and tuning the
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Figure 6: Runtime performance of the SPECjvm98 benchmarks using Jamaica and JDK 1.1.8, 1.2 and 1.2.2
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compiler’s optimization techniques, one can expect
that better optimization in the compiler will permit to
improve the performance of Jamaica further. Another
source for future performance enhancements will be
direct generation of machine code instead of using C
as an intermediate language as is done currently.
Using C does not permit optimal code selection for
primitives like write-barrier code or garbage collec-
tor root reference information. Direct generation of
machine code permits selection of better code for
these primitives, e.g., by assigning certain registers
for specific purposes.

5. CONCLUSIONS

In this paper the Jamaica implementation of Java
has been presented. The deterministic implementa-
tion of Java’s primitive operations in this implemen-
tation has been explained. The implementation per-
mits static analysis of the execution time of its primi-
tive operations that is not possible with current Java
implementations.

The performance of the implementation has then
been measured and compared to different versions of
Sun’s JDK implementation using the SPECjvm98
benchmark suite. The results show that performance
that is comparable to Sun’s implementations can be
reached. These results encourage us to further impro-
ve our implementation and to further reduce the per-
formance gap compared to non-deterministic Java
implementations.

6. FUTURE WORK

The deterministic implementation of a program-
ming language’s primitive operations provides only
the basis for further analysis of the code. Tools for
automatic determination of worst-case execution
times can be build on top of this. For an accurate ana-
lysis that is not too conservative, mechanisms to mo-
del the system’s cache memories and the effects of
modern superscalar processors on the execution time
need to be developed.

7. AVAILABILITY

The described Java implementation is available
for academic and non-academic purposes. Please
contact the authors or visit the web-site at
http://www.aicas.com to obtain further information.
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