
Configuring the Heap and
Garbage Collector for Real-
Time Programming.

. . . A user’s perspective to
garbage collection

Fridtjof Siebert, IPD, University of Karlsruhe

Configuring the Heap and Garbage Collector for Real-Time Programming

1 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

Structure
• What is the purpose of a garbage collector

• What knobs are there to turn?

• Different GCs: Blocking, Generational,
Concurrent, Conservative, Mixed

• GCs that couple work with allocation

• Example

• Conclusion

2 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

What is the purpose of GC?
An automatic mechanism for memory
management, to take the burden of

èmemory reclamation

èmemory defragmentation

è dangling references

èmemory leaks / forgotten free()s

from the user.

3 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

GC as a black box
The user does not understand what is hap-
pening inside the GC algorithm!

But: The user might configure the behaviour
of the GC.

We have a black box with knobs to turn!

To be able to configure the GC seen as a black
box, the user needs guidance and tools to
make a good decision.

Else he will make bad decisions!

4 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

What are these knobs?
èHeap size (min/initial, max, ...)

èObject count

èAmount of GC work

• GC priority
• GC threshold
• GC scanning rate
• GC CPU-percentage
• ...

èControl GC Algorithm
• Select a GC implementation

5 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

In a blocking garbage collector
Effect of changing heap size h:

èGC pause time p changes, ex. p ∼ h

èGC pause frequency f changes, ex. f ∼ 1/ h

èApplication behaviour changes:

•Runs fine for h >= hmin

•crashes for h < hmin

What is the value of hmin?

6 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

In a generational GC

Effect of changing heap size h:

è Same behaviour as blocking GC, but

• Shorter pause time pyoung and higher
frequency fyoung for collecting young

• Pause time pold for collecting old as long
as for blocking GC.

• Application dependency: lower frequen-
cy fold of collections of old area?

7 Jamaica Systems

‘old’ areaGCed areaHeap:

Age: young → old

Concurrent Garbage Collector
GC running e.g. as a separate thread.

Values to be adjusted

è heap size h
è GC threshold t (when does GC start?)
è GC rate r / priority / etc.

Minumum GC rate rmin depends on applica-
tion. We need a tool to determine this value!

Configuring the Heap and Garbage Collector for Real-Time Programming

8 Jamaica Systems

r

fblock

rmin

Configuring the Heap and Garbage Collector for Real-Time Programming

Conservative Garbage Collector
Change of configuration or of
input data has unpredictable
effects on GC performance and
effectiveness!

⇒ useless for nearly any
serious application!

9 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

Mixed approaches
Example: HotSpot offering choice between

è Generational GC + Blocking for old area

--or--

è Generational GC + Incremental for old

What guides the user by his choice?

If one choice does not work, just try the other
one and hope?

10 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

GC coupled with allocation
Values to be adjusted by user

è heap size h
è static GC work wstat on allocation

⇒ set wstat to 5 (= 2/(1-hmax))

Requires tool to determine hmax and wstat.

11 Jamaica Systems

max. used hmax (eg. 60%) GC2Heap: GC1

wstat

wcetalloc

Configuring the Heap and Garbage Collector for Real-Time Programming

GC work determined dynamically
Values to be adjusted by user

è heap size h

GC determines wdyn as function of amount of
free memory.

Tool to select h and determine wcetalloc needed.

12 Jamaica Systems

h

wcetalloc

hmin

Configuring the Heap and Garbage Collector for Real-Time Programming

Example

public class HelloWorld {
public static void main(String[] args) {

int n,s,c;
s = 0;
c = 14;
for(int i=0; i<30; i++) {

String s1 = " ".substring(s+14);
String s2 = " ".substring(s/2+7);
System.out.println(s1+"Hello "+s2+"World!");
s = s + c / 4;
c = c - s / 4;

}
}

}

13 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

Example
> jamaica -analyse 5 HelloWorld
> HelloWorld

Hello World!
Hello World!

[...]
Application used at most 117224 bytes for Java heap
###
heapSize wcet dynamic wcet static
337k 7 3
226k 7 4
189k 10 5
170k 14 6
162k 16 7
152k 21 8
143k 28 10
134k 40 14
121k 138 40
118k 286 80

14 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

Example
Determination of worst-case execution time of

new StringBuffer()
Determine number of blocks:

> numblocks java.lang.StringBuffer
1

Worst-case execution time:

wcet = numblocks · maxgc_unit · wcetgc_unit

wcet152k = 1 · 21 · 2µs = 42µs

wcet226k = 1 · 7 · 2µs = 14µs

15 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

Comparison
GC Algorithm Knobs Effects on

Blocking h pause times p
Generational h, ... pause freq. f

Concurrent h, r, ... blocking freq. f
GC overhead

Static on alloc h, ws wcetalloc

Dynamic on alloc h wcetalloc

16 Jamaica Systems

Configuring the Heap and Garbage Collector for Real-Time Programming

Conclusion
• The user can not be burdened with under-

standing the GC mechanism used by an
implementation.

• Current implementations lack tools that
guide the user in making a good choice for
GC configuration

• Fewer knobs are better! A value that can’t
be changed can’t be set wrong.

17 Jamaica Systems

