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Structure
• What is the purpose of a garbage collector

• What knobs are there to turn?

• Different GCs: Blocking, Generational, 
Concurrent, Conservative, Mixed

• GCs that couple work with allocation

• Example

• Conclusion
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What is the purpose of GC?
An automatic mechanism for memory 
management, to take the burden of

èmemory reclamation

èmemory defragmentation

è dangling references

èmemory leaks / forgotten free()s

from the user. 
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GC as a black box
The user does not understand what is hap-
pening inside the GC algorithm! 

But: The user might configure the behaviour
of the GC. 

We have a black box with knobs to turn!

To be able to configure the GC seen as a black
box, the user needs guidance and tools to
make a good decision.

Else he will make bad decisions!
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What are these knobs?
èHeap size  (min/initial, max, ...)

èObject count

èAmount of GC work

• GC priority
• GC threshold
• GC scanning rate
• GC CPU-percentage
• ...

èControl GC Algorithm
• Select a GC implementation
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In a blocking garbage collector
Effect of changing heap size h:

èGC pause time p changes, ex. p ∼ h

èGC pause frequency f changes, ex. f ∼ 1/ h

èApplication behaviour changes: 

•Runs fine for h >= hmin

•crashes for h < hmin

What is the value of hmin?
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In a generational GC

Effect of changing heap size h:

è Same behaviour as blocking GC, but

• Shorter pause time pyoung and higher 
frequency fyoung for collecting young

• Pause time pold for collecting old as long
as for blocking GC.

• Application dependency: lower frequen-
cy fold of collections of old area?
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‘old’ areaGCed areaHeap:

Age: young → old

Concurrent Garbage Collector
GC running e.g. as a separate thread.

Values to be adjusted

è heap size h
è GC threshold t (when does GC start?)
è GC rate r / priority / etc.

Minumum GC rate rmin depends on applica-
tion. We need a tool to determine this value!

Configuring the Heap and Garbage Collector for Real-Time Programming
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Conservative Garbage Collector
Change of configuration or of 
input data has unpredictable 
effects on GC performance and 
effectiveness!

⇒ useless for nearly any 
serious application!
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Mixed approaches
Example: HotSpot offering choice between

è Generational GC + Blocking for old area

--or--

è Generational GC + Incremental for old 

What guides the user by his choice?

If one choice does not work, just try the other
one and hope?
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GC coupled with allocation
Values to be adjusted by user

è heap size h
è static GC work wstat on allocation

⇒ set wstat to 5 (= 2/(1-hmax))

Requires tool to determine hmax and wstat.
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max. used hmax (eg. 60%) GC2Heap: GC1

wstat

wcetalloc
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GC work determined dynamically
Values to be adjusted by user

è heap size h

GC determines wdyn as function of amount of
free memory.

Tool to select h and determine wcetalloc needed.
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Example

public class HelloWorld { 
public static void main(String[] args) { 

int n,s,c; 
s = 0; 
c = 14; 
for(int i=0; i<30; i++) {

String s1 = "              ".substring(s+14); 
String s2 = "              ".substring(s/2+7); 
System.out.println(s1+"Hello "+s2+"World!"); 
s = s + c / 4; 
c = c - s / 4; 

} 
} 

}
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Example
> jamaica -analyse 5 HelloWorld 
> HelloWorld 

Hello        World! 
Hello       World! 

[...]
### Application used at most 117224 bytes for Java heap
###
###   heapSize    wcet dynamic    wcet static    
###   337k               7             3
###   226k               7             4
###   189k              10             5
###   170k              14             6
###   162k              16             7
###   152k              21             8
###   143k              28            10
###   134k              40            14
###   121k             138            40
###   118k             286            80
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Example
Determination of worst-case execution time of 

new StringBuffer()
Determine number of blocks:

> numblocks java.lang.StringBuffer
1

Worst-case execution time:

wcet = numblocks · maxgc_unit · wcetgc_unit

wcet152k = 1 · 21 · 2µs = 42µs

wcet226k = 1 ·  7 · 2µs  = 14µs
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Comparison
GC Algorithm Knobs Effects on

Blocking h pause times p
Generational h, ... pause freq. f

Concurrent h, r, ... blocking freq. f
GC overhead

Static on alloc h, ws wcetalloc

Dynamic on alloc h wcetalloc
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Conclusion
• The user can not be burdened with under-

standing the GC mechanism used by an
implementation.

• Current implementations lack tools that
guide the user in making a good choice for
GC configuration

• Fewer knobs are better! A value that can’t
be changed can’t be set wrong.
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