
ABSTRACT

Fragmentation can cause serious loss of memory in systems
that are using dynamic memory management. Any useful
memory management system must therefore provide means to
limit fragmentation. Today’s garbage collector implementa-
tions often do this by moving objects in a way that free
memory is non-fragmented. This paper presents a new object
model that is based on fixed size blocks. The model eliminates
external fragmentation without the need to move objects. A
Java virtual machine and a static Java bytecode compiler that
use this object model have been implemented and analysed
using the SPECjvm98 benchmark suite. This Java implementa-
tion allows for deterministic memory management as needed
in real-time systems that is difficult to achieve with moving
collectors and unparalleled by current implementations.

1. INTRODUCTION

Allocation and deallocation of objects of different sizes in a
system with dynamic memory management can cause memory
fragmentation. Fragmented memory is free memory that can-
not be used by the memory management system to satisfy an
allocation request. One generally distinguishes between inter-
nal and external fragmentation. Internal fragmentation is
memory lost due to the allocator’s policy of object alignment
and padding. External fragmentation is memory lost because
free memory is non-contiguous in a way that an allocation re-
quest cannot be satisfied even though the total amount of free
memory would be sufficient for the request.

The amount of memory lost due to external fragmentation can
be very high, a few objects can prevent large amounts of
memory from being used to satisfy larger allocation requests.
If no measure against fragmentation is taken, the typical worst-
case memory usage is the maximum amount of live data times

the number of allocation sizes [1]. However, actual applica-
tions typically cause a relatively low average loss due to frag-
mentation [2]. This result is nevertheless of little help for sa-
fety-critical systems that have to give performance guarantees.
In such a system, a guaranteed upper bound on the amount of
memory lost due to fragmentation is needed.

2. MOVING COLLECTORS

A common means to fight external fragmentation is to allow
the garbage collector to move objects in a way that free
memory is contiguous. Examples are compacting mark and
sweep collectors like the one used in Sun’s Java Development
Kit [3], or two-space copying collectors that were first propo-
sed by Fenichel and Yochelson [4] and later enhanced for real-
time systems by Baker [5].

To avoid the need to update all references to an object that has
moved, so called handles or forwarding pointers [6] are used
and all accesses to the heap are performed via these indirec-
tions causing additional runtime overhead.

Changing object addresses significantly complicates optimi-
zing compilers since address computations for fields or array
elements can become invalid by garbage collector activity.

3. FIXED SIZE BLOCKS

A different strategy to avoid external fragmentation is to divide
the heap into a set of blocks of equal size. Small allocation re-
quests can be satisfied by allocating a single block, while lar-
ger ones require a possibly non-contiguous set of several
blocks to be used to access the required amount of memory.
Blocks never move, and any free block is available for any
allocation request.

Important questions are what size should be used for these
blocks and how larger objects should be built out of several
blocks. The next sections present structures for objects and
arrays. A Java virtual machine [7] and a static Java compiler
have been implemented and the performance of the
SPECjvm98 benchmarks suite [8] was analysed using this im-
plementation.

Eliminating External Fragmentation in a
Non-Moving Garbage Collector for Java

Fridtjof Siebert
IPD, Universität Karlsruhe

Oberfeldstr. 34B
76149 Karlsruhe, Germany

siebert@jamaica-systems.de

3.1 Building Objects out of Blocks

Java objects consist of a set of instance fields and a fixed num-
ber of words for virtual method table, type information, etc.

Instance fields are inherited through class extension. The sub-
class can add new fields to the set of inherited fields. The posi-
tion of an inherited field should be the same in objects of the
inheriting class as in objects of the parent class, such that field
accesses can be performed by the same simple code indepen-
dent of the dynamic type of a reference.

Since Java objects are typically very small (Dieckmann finds
average sizes between 12 and 23 bytes per object [9]), a simple
linked list of blocks can be used to represent Java objects of ar-
bitrary sizes, where one word per block is reserved for the link.
The first block will contain the required type information and
the first fields. If a second block is needed, the link field will
point to a second block containing more fields. More blocks
can be used if needed.

For a fixed block size of 16 bytes and a word
size of 32 bits, Figure 1 shows the structure of
an object with seven fields of one word each.
Using this object layout, fields can be added in a
child class without changing the position of in-
herited fields, so that an access to a field does
not require knowledge about the actual class of
the object.

The time O(p) required to access a field in an ob-
ject is linear in the position p of the field in the
object, instead of constant O(1) for a classical re-
presentation of objects. The position p and hence
the access time can be determined statically. We
will see that an average field access requires
little more than a single memory access.

3.2 Building Arrays out of Blocks

Arrays can be very large, so representing arrays
as linked lists would impose a very high cost on
array accesses. The representation proposed here
is a tree structure similar to the list structure pro-
posed in [10]. The number of branches per node
is the highest possible power of two permitted
by the block size. The array data is stored in the
leaf nodes only.

A Java array needs information on its type and
length, which are stored in the array header. To
ease the access to the elements, it is useful to
also store the depth of the tree representation
with each array. Figure 2 illustrates an array of
11 elements of one word each, again for a block
size of 16 bytes.

Using this tree structure gives us a performance
in O(ln(size)) for element accesses in an array
with size elements. This might be shocking com-

pared to the traditionally constant cost, but a usually low upper
bound for the access time can be found for any given system,
e.g., in a system with 32-byte (8 words) blocks and a heap of
16MBytes, the tree depth will never exceed 7.

The code required to access an element in such an array can
use a small loop to descend the tree to a leaf, a possible imple-
mentation in C-code is given in Listing 1.

The value node_width used here is a constant power of two
specifying the number of words in a node of the tree. The code
is for 16-byte blocks, but it can be changed to allow different
sizes by changing the #define’s. For a block size of 32 bytes
the constants node_width and log2_node_width have to be 8
and 3, respectively.

The array access code can be implemented efficiently in ma-
chine code. As an example, Listing 2 shows the assembler-
code that could be produced for the ARM processor [11]. The
code is sufficiently short to be inlined, avoiding additional call
overhead for array accesses.

Field 6

Field 7

—

—

Type

Field 1

Field 2

Link

Field 3

Field 4

Field 5

Link

Figure 1: Object with 7 fields composed out of
three blocks of 16 bytes each.

Block 1: Block 2: Block 3:

Array Type

Length: 11

Depth: 2

Elements

link 0..3

link 4..7

link 8..10

—

data[0]

data[1]

data[2]

data[3]

Figure 2: Tree representation of an array of 11 word
elements composed out of five blocks of 16 bytes.

Block 1 (header): Block 2 (links):

Blocks 3-5 (data):

data[4]

data[5]

data[6]

data[7]

data[8]

data[9]

data[10]

—

3.3 Supporting More Efficient Contiguous
Arrays

Even though accesses to arrays that are represented as trees can
be implemented in a surprisingly efficient way, the frequent
use of arrays in typical Java applications causes the array ac-
cess code to be one of the most important performance bottle-
necks of this approach. Since fragmentation is typically low
[2], it would be preferable to use a linear representation for
arrays whenever possible. Such a representation is possible
when setting the depth field in an array to zero as shown in
Figure 3 for the array from Figure 2. The array access code
shown above does not need to be changed, it is correct for both
array representations. On an allocation of an array the linear
structure can be used whenever a sufficiently large contiguous
range of free blocks is available and can be found quickly
enough. Else the tree representation can be used as a fall-back
whenever the memory is too fragmented or searching for a
suitable free range would be too expensive.

4. IMPLICATIONS OF THE USE OF
FIXED SIZE BLOCKS

The use of fixed size blocks instead of a moving collector to
avoid fragmentation has a number of important consequences
for the implementation of a Java virtual machine and a compi-
ler.

4.1 Updating References for Moved Objects

Moving garbage collectors are usually more complex to imple-
ment than non-moving ones. It is important to update all refe-
rences with the new location of a moved object. This updating
requires all reference variables to be known to and modifiable
by the collector, while for non-moving schemes it is sufficient
if the garbage collector finds one reference to each referenced
objects, no matter how many other references to the same ob-
ject may exist.

If this exact information is not available because, e.g., a com-
piler that is not garbage collection aware is used, conservative
mechanisms have to be employed [12]. Objects must not be
moved when a reference seems to exist to that object. In this
case, defragmentation can only be partial, and fragmentation
can still lead to unpredictable allocation failures.

A scheme using handles can be used to avoid the need to upda-
te all references. But this introduces a significant run-time
overhead and conservatism might still be needed while direct
accesses to objects are in use, e.g., by compiled code.

When fixed size blocks are used, objects are never moved, so
references do not need to be updated by the collector. It is suf-
ficient if the garbage collector finds one reference of each ob-
ject that is in use. There is no need for handles, and the compi-
ler is free to use direct references to objects without informing
the garbage collector as long as the compiler assures that at

- - r A p o i n t s t o t h e a r r a y
- - r I c o n t a i n s t h e i n d e x
- - r D , r T t e m p o r a r y v a l u e s
- - r E r e s u l t

l d r D , [r A , # d e p t h] - - r D = r A - > d e p t h
a d d r E , r A , # e l e m e n t s - - r E = & (r A - > e l e m e n t s)
a d d s r D , r D , r D - - r D = r D * l o g 2 _ n o d e _ w i d t h
b e q e n d - - i f (r D = = 0) g o t o e n d

l o o p : m o v r T , r I , L S R r D - - r T = r I > > r D
l d r E , [r E , r T L S L # 2] - - r E = r E [r T]
s u b r I , r I , r T , L S L r D - - r I = r I - (r T < < r D)
s u b s r D , r D , # 2 - - r D = r D - l o g 2 _ n o d e _ w i d t h
b n e l o o p - - i f (r D ! = 0) g o t o l o o p

e n d : l d r E , [r E , r I L S L # 2] - - r E = r E [r I]

Listing 2: ARM-Code to access array elements

d e f i n e n o d e _ w i d t h 4 / * 4 w o r d s i n a b l o c k * /
d e f i n e l o g 2 _ n o d e _ w i d t h 2 / * l o g 2 (n o d e _ w i d t h) * /

w o r d r e a d A r r a y E l e m e n t (b l o c k * a r r a y , i n t i n d e x) {
b l o c k * * p t r = & (a r r a y - > e l e m e n t s) ;
i n t d = a r r a y - > d e p t h * l o g 2 _ n o d e _ w i d t h ;
w h i l e (d ! = 0) {

i n t t = (i n d e x > > d) ;
p t r = p t r [t] ;
i n d e x = i n d e x - (t < < d) ;
d = d - l o g 2 _ n o d e _ w i d t h ;

}
r e t u r n ((w o r d *) p t r) [i n d e x] ;

}

Listing 1: C-Code to access array elements

Figure 3: Contiguous representation
of an array of 11 elements.

Block 1:
(header)

Array Type

Length: 11

Depth: 0

data[0]

data[1]

data[2]

data[3]

data[4]

data[5]

data[6]

data[7]

data[8]

data[9]

data[10]

—

—

Block 2:

Block 3:

Block 4:

least one reference to each object that is accessed is known to
the collector.

4.2 Dealing with Large Objects

An incremental moving collector typically has to move objects
atomically. Since an object in a language like Java might be a
large array, moving an object atomically will introduce a long
pause that is not acceptable for real-time systems.

Incrementally moving an array as proposed in [13] is likely to
impose an unacceptable run-time overhead and to complicate
both the garbage collector and the compiler. Also, hardware-
assisted garbage collection algorithms that incrementally move
large objects have been proposed [14].

Using the system’s memory management unit for defragmen-
tation has been proposed [15], which might be a solution for
some systems.

Another difficulty is scanning a large object for references
during the garbage collector’s mark phase. It might be desira-
ble to scan one object atomically, and not be interrupted by
mutator activity while an object is being scanned. For large
objects, this would also introduce long pauses.

In the presented fixed size approach, scanning can be done
block-wise. This means that at some point during garbage
collection, parts of the same object might have been scanned
by the collector, while others have been found to be reachable
and yet others have not yet been touched by the garbage collec-
tor. Since blocks all have the same small size, the time for
scanning a single block has a small worst-case upper bound.
Since blocks are never moved, the problems due to moving lar-
ge objects never occur in this case.

4.3 Ease of Garbage Collector Implementa-
tion and Verification

An exact garbage collector requires detailed information on the
layout of objects, their sizes and the location of references
within each object. Often, it needs access to programming lan-
guage specific data to obtain this information.

When fixed size blocks are used, the garbage collector does not
need to know about the size or structure of objects (as shown in
Figures 1 through 3). All it has to care about are blocks. To
store the information on the location of references in a block,
an additional bit array is sufficient that has one bit for every
word that indicates which words are references.

Complexity is taken from the garbage collector, the implemen-
tation is simpler to verify and easier to prove correct. However,
it has to be noted that some complexity is added to the compi-
ler that has to generate additional code for accesses to fields
and array elements.

5. THE JAMAICA VIRTUAL MACHINE

Jamaica is a new implementation of a Java virtual machine and
a static Java compiler that uses fixed size blocks to represent
all dynamically allocated data structures. This includes not
only Java objects, but also all internal data structures used by
the implementation, e.g., structures for representing classes or
method tables for dynamic binding. Arrays are allocated in the
contiguous representation only if a free range that is sufficient-
ly large can be found in constant time. The first free range in
the free list and the largest free range found during the last gar-
bage collection cycle are checked if one of them is large
enough. Otherwise, the tree representation is used. The alloca-
tor never searches for a free range of a suitable size such that
the allocation time is bounded.

The other aspects of the implementation’s garbage collector
are described in more detail in earlier publications [16], [17].
Synchronization points are used to limit thread switches and
garbage collection activity to these points. Root scanning is
done by explicitly copying all locally used references onto the
heap to avoid the need to scan stacks and registers. The gar-
bage collection algorithm itself does not know about Java
objects, it works on single fixed size blocks. It is a simple
Dijkstra et. al. style incremental mark and sweep collector
[18]. A reference-bit-vector is used to indicate for each word
on the heap if it is a reference, and a colour-vector with one
word per block is used to hold the marking information. These
vectors exist parallel to the array of blocks.

The garbage collector is activated whenever an allocation is
performed. The amount of garbage collection work is determi-
ned dynamically as a function of the amount of free memory in
a way that sufficient garbage collection progress can be gua-
ranteed while a worst-case execution time of an allocation can
be determined for any application with limited memory requi-
rements [19]. This approach requires means to measure
allocation and garbage collection work. The use of fixed size
blocks gives natural units here: the allocation of one block is a
unit of allocation while the marking or sweeping of an
allocated block are units of garbage collection work.

The static compiler for the Jamaica virtual machine is integra-
ted in the Jamaica builder utility. This utility is capable of buil-
ding a stand-alone application out of a set of Java class files
and the Jamaica virtual machine. The builder optionally does
smart linking and compilation of the Java application into C
code. The compiler performs several optimizations similar to
those described in [20]. The generated C code is then translated
into machine code by a C compiler such as gcc.

6. CHOOSING A BLOCK SIZE

When using blocks of a fixed size, the most important decision
to be made is to chose the block size. It is not at all clear which
size is best for typical Java applications; it is indeed very like-
ly that different applications with different allocation beha-
viour perform best with different block sizes. The block size

used by Jamaica is therefore configurable, it can be chosen bet-
ween 16 and 128 bytes at build time.

The run-time performance and heap requirements of seven
benchmarks from the SPECjvm98 benchmark suite have been
analysed using 17 different fixed block sizes. Only one test
from the benchmark suite, _200_check, is not included in the
data since it is not intended for performance measurements but
to check the correctness of the implementation (and Jamaica
passes this test).

For execution, the test programs were compiled and smart
linked using the Jamaica Builder. The programs were then exe-
cuted on a single processor (333 MHz UltraSPARC-IIi) SUN
Ultra 5/10 machine with 256MB of RAM running SunOS 5.7.

In addition to the performance of Jamaica, the performance
using SUN’s JDK 1.1.8, 1.2 and 1.2.2 [3], [21] and their just-
in-time compilers have been measured as well. However, these
values are given for informative reasons only. A direct compa-
rison of the garbage collector implementation is not possible
due to a number of fundamental differences in the implementa-
tions (real-time vs. non-real-time garbage collection, static vs.
just-in-time compilation, etc.).

6.1 Run-Time Performance

First, the run-time performance of the example programs has
been measured for 17 different block sizes. The results are
shown in Figure 4. For the analysis, the heap size was set to
32MB for most tests. Only for compress, javac and mtrt it was
set to 64MB, 72MB and 48MB, respectively, since these tests
required more memory for some block sizes.

Block sizes that are powers of two cause a significantly better
performance than other sizes. The main reason is the simplifi-
cation of accesses to blocks and entries in the colour-vector
and reference-bit-vector, where shift operations can be used in-
stead of slow multiplications and divisions. Additionally,
blocks with a size that is a power of two can be aligned with
the system’s cache lines, reducing cache misses.

Very small block sizes cause bad performance since a smaller
block size causes more frequent splitting of an object into se-
veral blocks.

For larger block sizes, the performance of some tests either re-
mains more or less constant (compress, mpegaudio, jack), whi-
le for the allocation intensive tests (jess, db, javac, mtrt) the
performance decreases when the block sizes are increased.
Larger blocks cause wasting of more memory, which causes
more garbage collection work to recycle sufficient memory.

For all benchmarks, the best performance is achieved when
using a power of two block size, but the optimal size differs
between the tests: 32 bytes is optimal for jess, db, javac and
mtrt, while 64 bytes is best for compress, mpegaudio and jack.

Compared to Sun’s implementation, the performance of most
tests for a ‘good’ block size is similar to that of JDK 1.1.8 or
1.2, while the performance of JDK 1.2.2 was improved signifi-

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

sec

96

64

32

0

_201_compress

Figure 4: Run-time performance of the
SPECjvm98 benchmarks using

different block sizes

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2.0 1.2.2

sec

96

64

32

0

_202_jess

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

sec

150

100

50

0

_209_db

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

sec

120

80

40

0

_213_javac

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

sec

96

64

32

0

_222_mpegaudio

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

sec

150

100

50

0

_227_mtrt

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

sec

45

30

15

0

_228_jack

cantly. One can expect that better optimization will allow im-
provement of the performance of Jamaica as well.

6.2 Memory Performance

Next, the heap requirements of the test applications were ana-
lysed. A special option ‘-analyse’ of Jamaica instruments the
garbage collector to run sufficiently aggressive to measure the
required heap to a given accuracy. For all tests, this accuracy
was set to 5%. During this analysis, all arrays are allocated in
their tree representation, so that the result is the worst-case
heap requirement for the case that no arrays could be allocated
in linear space due to fragmentation. The results of the memory
analysis are shown in Figure 5.

For the JDK’s, the minimum heap requirement was determined
by gradually decreasing the options -ms and -mx until the
application failed with an out-of-memory error.

For all test programs, the space for the objects increases with
the fixed size that was chosen. The reason for this is that a vast
majority of the objects allocated are very small, and bigger
fixed sizes are of no use for these objects.

For most tests, the amount of memory required periodically
drops at sizes that are powers of two. The reason is the tree re-
presentation of arrays that uses only the largest possible power
of two number of words in each node or leaf of the tree. All the
excess words are unused.

The smallest heap for most tests is possible with a block size of
32 bytes, the exceptions are the array-intensive tests compress
and mpegaudio with the smallest heap for 128 or 64 byte
blocks. In mtrt most objects that are allocated fit into a block of
20 bytes such that the smallest heap is attained using this block
size.

6.3 Allocation and Memory Access Charac-
teristics of the Benchmarks

To better understand the behaviour of the benchmark suite, the
Jamaica compiler was instrumented to create additional code
to collect information during the execution of the tests. First,
the amount of memory allocated for objects and arrays was de-
termined. For arrays, it was also recorded whether an array
could be represented as a contiguous range of memory or
whether the tree representation had to be used. The results are
presented in Figure 6.

Some tests (compress and mpegaudio) allocate most of their
memory for arrays, while the other tests also allocate signifi-
cant amounts for objects. The memory allocated for arrays in
tree representation is insignificant for most tests, only com-
press and javac allocate a larger fraction of their arrays as
trees. This result shows that in the benchmarks, fragmentation
is not high during the execution of the benchmarks. Even the
constant-time test to find a suitable range of free blocks for an
array allocation is typically successful.

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

MB

48

32

16

0

_201_compress

Figure 5: Minimum heap required
for different block sizes

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

MB

4.5

3

1.5

0

_202_jess

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

MB

18

12

6

0

_209_db

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

MB

48

32

16

0

_213_javac

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

MB

7.5

5

2.5

0

_222_mpegaudio

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

MB

30

20

10

0

_227_mtrt

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128 jdk
1.1.8 1.2 1.2.2

MB

3

2

1

0

_228_jack

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

MB

375

250

125

0

_213_javac

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

MB

120

80

40

0

_201_compress

Figure 6: Amount of memory allocated for
contiguous arrays, tree arrays and objects for

different block sizes

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

MB

600

400

200

0

_202_jess

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

MB

480

320

160

0

_209_db

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

MB

3

2

1

0

_222_mpegaudio

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

MB

600

400

200

0

_227_mtrt

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

MB

192

128

64

0

_228_jack

tree arrays

contiguous arrays

objects

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

x109

4.5

3

1.5

0

_201_compress

Figure 7: Number of memory accesses per-
formed for array elements and object fields

using different block sizes

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

x106

600

400

200

0

_202_jess

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

x106

1200

800

400

0

_209_db

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

x106

750

500

250

0

_213_javac

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

x106

2400

1600

800

0

_222_mpegaudio

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

x106

450

300

150

0

_227_mtrt

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

x106

240

160

80

0

_228_jack

memory accesses for arrays

memory accesse for objects

Next, the number of memory accesses required by the bench-
marks to access objects and arrays on the heap was analysed.
For an access to a field of an object, a single memory access is
sufficient if the field resides in the first block used to represent
the object. Two memory accesses are needed for fields in the
second block (to read the link from the first block and to access
the field itself), etc.

For accesses to arrays, the number of memory accesses
required depends on the representation of the array: In conti-
guous representation, the array’s depth needs to be read and
checked, next the element itself can be accessed, so two
memory accesses are needed. For an array in tree representa-
tion, the tree needs to be traversed. This traversal requires d
memory reads for a tree of depth d. The depth and the element
itself need to be accessed as well, so we get 2+d memory
accesses in this case. Figure 7 illustrates the total number of
memory accesses required by the benchmarks. The number of
memory accesses for objects changes significantly with the
block size, while that for arrays is less affected by a change in
the block size. Very small block sizes causes significantly more
memory accesses for objects.

The average number of memory accesses required to access a
field of an object or an array element was determined. The re-
sults are presented in Figure 8.

For object accesses, the average number of memory accesses is
very close to 1 for most block sizes, only very small blocks be-
low 32 bytes cause the average number of accesses to rise sig-
nificantly, up to around 2 memory accesses for a block size of
16 bytes. The low average number of memory accesses is due
to the typically small size of objects in Java. Additionally,
when fields of large objects are accessed, those fields with
small offsets tend to be accesses more frequently than those
with larger offsets.

For most tests, most array accesses are to arrays in contiguous
representation, so the average number of memory accesses is 2
or just above 2. Only compress, db and javac have a significant
number of accesses to arrays in tree representation. For very
small block sizes, the average number of memory accesses
reaches values close to 3, but for blocks of at least 32 bytes this
value remains close to 2.

If we compare these results to a memory management system
that moves objects and uses handles, we see that object
accesses need significanlty fewer memory accesses in our ap-
proach: Close to a single memory access compared to 2
accesses to read the handle reference and the field itself. The
average number of memory accesses required for array ele-
ments in our approch is slightly worse: Just above 2 accesses
compared to exaclty 2 when using handles.

6.4 A Good Standard Block Size

A block size of 32 bytes has a good run-time performance and
heap size requirement for most cases, so it seems to be a good
size for most applications. However, since some applications

achieve their optimal run-time or heap size performance with
different sizes, an implementation should allow selection of a
different default size to best serve the application’s needs.

Selection of a power of two is strongly recommended due to
the better run-time and heap-size performance in most cases.

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

3

2

1

0

_201_compress

Figure 8: Average number of memory
accesses required to access object

fields and array elements for
different block sizes

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

3

2

1

0

_202_jess

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

3

2

1

0

_209_db

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

3

2

1

0

_213_javac

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

3

2

1

0

_222_mpegaudio

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

3

2

1

0

_227_mtrt

block size 16 20 24 28 32 36 40 44 48 56 64 72 80 88 96 112 128

3

2

1

0

_228_jack

object fields

array elements

7. CONCLUSIONS

A new object model that uses fixed size blocks to avoid frag-
mentation has been presented. It has been applied to a new im-
plementation of a Java virtual machine and a static Java com-
piler to analyse its behaviour. The results show that one can
achieve performance that is comparable to that of current Java
implementations. Furthermore, it has been shown that, using
this object model, one can give hard real-time guarantees that
are difficult to achieve with the traditional mechanisms to fight
fragmentation, that the amount of reference tracing informa-
tion needed is reduced, and that garbage collector implementa-
tion is simplified.

Even though the original goal was to provide deterministic be-
haviour for a hard real-time implementation of Java, the elimi-
nation of fragmentation and the simplified garbage collector
increase the total reliability of the implementation, so that
some applications that do not require hard real-time behaviour
can be expected to benefit from it as well.

REFERENCES

[1] Paul R. Wilson and Mark S. Johnstone: Real-Time Non-
Copying Garbage Collection, ACM OOPSLA Workshop
on Memory Management and Garbage Collection, 1993

[2] Mark Stuart Johnstone: Non-Compacting Memory
Allocation and Real-Time Garbage Collection, PhD Dis-
sertation, The University of Texas at Austin, December
1997

[3] Java Development Kit 1.1.8, SUN Microsystems Inc.,
1999

[4] Robert R. Fenichel and Jerome C. Yochelson: A LISP
Garbage-Collector for Virtual-Memory Computer
Systems, Communications of the ACM, Volume 12, 11,
pp. 611-612, November 1969.

[5] Henry G. Baker: List processing in Real Time on a Serial
Computer. Communications of the ACM 21,4 (April
1978), p. 280-294, ftp://ftp.netcom.com
/pub/hb/hbaker/RealTimeGC.html

[6] Rodney A. Brooks: Trading Data Space for Reduced
Time and Code Space in Real-Time Garbage Collection
on Stock Hardware, Lisp and Functional Programming,
pp. 256-262, ACM Press, 1984

[7] Tim Lindholm, Frank Yellin: The Java Virtual Machine
Specification, Addison-Wesley, 1996

[8] SPECjvm98 benchmarks suite, V1.03, Standard Perfor-
mance Evaluation Corporation, July 30, 1998

[9] Sylvia Dieckmann and Urs Hölzle: A Study of the
Allocation Behavior of the SPECjvm98 Java Bench-
marks, 13th European Conference on Object-Oriented
Programming (ECOOP’99), Lisbon, 1999

[10] P. A. Rounce: A Processor with List Structured Memory,
Proceedings Advanced Computer Technology, Reliable
Systems and Applications, 5th Annual European Compu-
ter Conference, Bologna, May 1991

[11] ARM Architecture Manual, Advanced Risc Machines Ltd,
Prentice Hall, 1996

[12] Joel F. Barlett: Compacting Garbage Collection with Am-
biguous Roots, Digital Equipment Corporation, 1988

[13] Danny Dubé, Marc Feeley and Manuel Serrano: Un GC
temps réel semi-compactant, Journées Francophones des
Langages Applicatifs, JFLA, Janvier 1996

[14] Kelvin Nilsen: Reliable Real-Time Garbage Collection of
C++, Computing Systems Vol 7, no. 4, 1994

[15] Michael Hicks, Luke Hornof, Jonathan T. Moore, Scott
M. Nettles: A Study of Large Object Spaces, International
Symposion on Memory Management (ISMM’98), Van-
couver, 1998

[16] Fridtjof Siebert: Real-Time Garbage Collection in Multi-
Threaded Systems on a Single Processor, Real-Time
Systems Symposium (RTSS’99), Phoenix, December
1999

[17] Fridtjof Siebert: Hard Real-Time Garbage Collection in
the Jamaica Virtual Machine, Real-Time Computing
Systems and Applications (RTCSA’99), Hong Kong, De-
cember 1999

[18] Edsgar W. Dijkstra, L. Lamport, A. Martin, C. Scholten
and E. Steffens: On-the-fly Garbage Collection: An Exer-
cise in Cooperation, Communications of the ACM, 21,11
(November 1978), p. 966-975

[19] Fridtjof Siebert: Guaranteeing non-disruptiveness and
real-time Deadlines in an Incremental Garbage Collector
(corrected version), International Symposium on
Memory Management (ISMM’98), Vancouver, 1998,
corrected version available at http://www.fridi.de

[20] Michael Weiss, François de Ferrière, Bertrand Delsart,
Christian Fabre, Frederick Hirsch, E. Andrew Johnson,
Vanial Joloboff, Fred Roy, Fridtjof Siebert, and Xavier
Spengler: TurboJ, a Bytecode-to-Native Compiler, Lan-
guages, Compilers, and Tools for Embedded Systems
(LCTES’98), Montreal, in Lecture Notes in Computer
Science 1474, Springer, June 1998

[21] Java Development Kit 1.2.2, SUN Microsystems Inc.,
2000

